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Why political actor representation learning? PAR Methodology PAR and Blue/Red/Swing States

Analyzing political text with language models and NLP models has become a
thriving research field at the intersection of natural language processing and
computational political science. i @ SACTON

These political texts, such as political op-eds, legislator statements, and
political news articles frequently mention various political actors.

Election’20 Vote Share Margin

While the names of political actors are just tokens to a language model,
real-world political analysis often goes beyond tokens and requires
much more domain knowledge, such as the referenced legislator’s party
affiliation, elected office, voting records, ideological position, and more.

I
gyt Gt A G oy e et A It el e ot ety Iy,

States

Figure 4: State stances predicted by PAR compared to vote shares in the 2020 U.S. presidential election.
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PAR learns state ideological preferences that correlate well with the 2020 election.

However, language models often could not achieve such fine-grained PAR follows a three-step approach to learn and use legislator representations: Finding 1: certain traditional swing states are no longer as competitive? (PA, NC)
understanding of external knowledge on their own, hence the need for 1. Construct heterogeneous information networks to jointly represent Finding 2: Georgia is the most electorally competitive state in the United States?
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While existing works on political actor analysis achieved relative success, . .. . .
they fall short of incorporating the social context and expert knowledge that Anquzmg Political Text with PAR representations
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Expert Knowledge result is not reported in previous works.
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